翻訳と辞書
Words near each other
・ Kirchheim unter Teck
・ Kirchheim, Bas-Rhin
・ Kirchheim, Hesse
・ Kirchheim, Lower Franconia
・ Kirchheim, Thuringia
・ Kirchheimbolanden
・ Kirchheimbolanden (Verbandsgemeinde)
・ Kirchhoff
・ Kirchhoff (crater)
・ Kirchhoff equations
・ Kirchhoff integral theorem
・ Kirchhoff's circuit laws
・ Kirchhoff's diffraction formula
・ Kirchhoff's law of thermal radiation
・ Kirchhoff's laws
Kirchhoff's theorem
・ Kirchhoff–Love plate theory
・ Kirchhorsten railway station
・ Kirchhundem
・ Kirchilpe
・ Kirchiyaan
・ Kirchlauter
・ Kirchleerau
・ Kirchlengern
・ Kirchlengern station
・ Kirchlespitz
・ Kirchliche Arbeit Alpirsbach
・ Kirchliches Handlexikon
・ Kirchlindach
・ Kirchlinteln


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kirchhoff's theorem : ウィキペディア英語版
Kirchhoff's theorem
In the mathematical field of graph theory Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time as the determinant of a matrix derived from the graph. It is a generalization of Cayley's formula which provides the number of spanning trees in a complete graph.
Kirchhoff's theorem relies on the notion of the Laplacian matrix of a graph that is equal to the difference between the graph's degree matrix (a diagonal matrix with vertex degrees on the diagonals) and its adjacency matrix (a (0,1)-matrix with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise).
For a given connected graph ''G'' with ''n'' labeled vertices, let ''λ''1, ''λ''2, ..., ''λn''−1 be the non-zero eigenvalues of its Laplacian matrix. Then the number of spanning trees of ''G'' is
:t(G)=\frac \lambda_1\lambda_2\cdots\lambda_\,.
Equivalently the number of spanning trees is equal to ''any'' cofactor of the Laplacian matrix of ''G''.
== An example using the matrix-tree theorem ==

First, construct the Laplacian matrix ''Q'' for the example kite graph ''G'' (see image at right):
: Q = \left(& -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
0 & -1 & -1 & 2
\end\right ).
Next, construct a matrix ''Q
*
'' by deleting any row and any column from ''Q''. For example, deleting row 1 and column 1 yields
: Q^\ast =
\left(& -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 2
\end\right
).
Finally, take the determinant of ''Q
*
'' to obtain ''t(G)'', which is 8 for the kite graph. (Notice ''t(G)'' is the ''(1,1)''-cofactor of ''Q'' in this example.)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kirchhoff's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.